Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.456
Filtrar
1.
Microb Pathog ; 190: 106630, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556102

RESUMO

Porcine circovirus type 2 (PCV2) is a globally prevalent infectious pathogen affecting swine, with its capsid protein (Cap) being the sole structural protein critical for vaccine development. Prior research has demonstrated that PCV2 Cap proteins produced in Escherichia coli (E. coli) can form virus-like particles (VLPs) in vitro, and nuclear localization signal peptides (NLS) play a pivotal role in stabilizing PCV2 VLPs. Recently, PCV2d has emerged as an important strain within the PCV2 epidemic. In this study, we systematically optimized the PCV2d Cap protein and successfully produced intact PCV2d VLPs containing NLS using E. coli. The recombinant PCV2d Cap protein was purified through affinity chromatography, yielding 7.5 mg of recombinant protein per 100 ml of bacterial culture. We augmented the conventional buffer system with various substances such as arginine, ß-mercaptoethanol, glycerol, polyethylene glycol, and glutathione to promote VLP assembly. The recombinant PCV2d Cap self-assembled into VLPs approximately 20 nm in diameter, featuring uniform distribution and exceptional stability in the optimized buffer. We developed the vaccine and immunized pigs and mice, evaluating the immunogenicity of the PCV2d VLPs vaccine by measuring PCV2-IgG, IL-4, TNF-α, and IFN-γ levels, comparing them to commercial vaccines utilizing truncated PCV2 Cap antigens. The HE staining and immunohistochemical tests confirmed that the PCV2 VLPs vaccine offered robust protection. The results revealed that animals vaccinated with the PCV2d VLPs vaccine exhibited high levels of PCV2 antibodies, with TNF-α and IFN-γ levels rapidly increasing at 14 days post-immunization, which were higher than those observed in commercially available vaccines, particularly in the mouse trial. This could be due to the fact that full-length Cap proteins can assemble into more stable PCV2d VLPs in the assembling buffer. In conclusion, our produced PCV2d VLPs vaccine elicited stronger immune responses in pigs and mice compared to commercial vaccines. The PCV2d VLPs from this study serve as an excellent candidate vaccine antigen, providing insights for PCV2d vaccine research.


Assuntos
Anticorpos Antivirais , Proteínas do Capsídeo , Circovirus , Escherichia coli , Proteínas Recombinantes , Vacinas de Partículas Semelhantes a Vírus , Animais , Circovirus/imunologia , Circovirus/genética , Suínos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/genética , Desenvolvimento de Vacinas , Antígenos Virais/imunologia , Antígenos Virais/genética , Imunoglobulina G/sangue , Análise Custo-Benefício , Feminino , Interferon gama/metabolismo , Imunogenicidade da Vacina
2.
J Virol ; 97(10): e0093823, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792003

RESUMO

IMPORTANCE: Human norovirus (HuNoV) is highly infectious and can result in severe illnesses in the elderly and children. So far, there is no effective antiviral drug to treat HuNoV infection, and thus, the development of HuNoV vaccines is urgent. However, NoV evolves rapidly, and currently, at least 10 genogroups with numerous genotypes have been found. The genetic diversity of NoV and the lack of cross-protection between different genotypes pose challenges to the development of broadly protective vaccines. In this study, guided by structural alignment between GI.1 and GII.4 HuNoV VP1 proteins, several chimeric-type virus-like particles (VLPs) were designed through surface-exposed loop grafting. Mouse immunization studies show that two of the designed chimeric VLPs induced cross-immunity against both GI.1 and GII.4 HuNoVs. To our knowledge, this is the first designed chimeric VLPs that can induce cross-immune activities across different genogroups of HuNoV, which provides valuable strategies for the development of cross-reactive HuNoV vaccines.


Assuntos
Infecções por Caliciviridae , Epitopos , Genótipo , Norovirus , Vacinas Virais , Vírion , Animais , Humanos , Camundongos , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Imunização , Norovirus/química , Norovirus/classificação , Norovirus/genética , Norovirus/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Vacinas Virais/imunologia , Quimera/genética , Quimera/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Vírion/química , Vírion/genética , Vírion/imunologia
3.
Viruses ; 15(2)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36851559

RESUMO

Papillomaviruses (PVs) are a family of small DNA tumor viruses that can induce benign lesions or cancer in vertebrates. The observation that animal PV capsid-proteins spontaneously self-assemble to empty, highly immunogenic virus-like particles (VLPs) has led to the establishment of vaccines that efficiently protect humans from specific PV infections and associated diseases. We provide an overview of PV-induced tumors in horses and other equids, discuss possible routes of PV transmission in equid species, and present recent developments aiming at introducing the PV VLP-based vaccine technology into equine medicine.


Assuntos
Proteínas do Capsídeo , Doenças dos Cavalos , Papillomaviridae , Infecções por Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Animais , Capsídeo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Cavalos , Papillomaviridae/genética , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/transmissão , Doenças dos Cavalos/prevenção & controle , Doenças dos Cavalos/transmissão , Doenças dos Cavalos/virologia
4.
Protein Expr Purif ; 203: 106214, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36526214

RESUMO

Hepatitis E is an emerging zoonotic disease, posing a severe threat to public health in the world. Since there are no specific treatments available for HEV infection, it is crucial to develop vaccine to prevent this infection. In this study, the truncated ORF2 encoded protein of 439aa∼617aa (HEV3-179) from HEV CCJD-517 isolates was expressed as VLPs in E. coli with diameters of approximate 20 nm. HEV3-179 protein was immunized with mice, and the results showed that a higher titre of antibody was induced in NIH mice in comparison with that of KM mice (P < 0.01) and BALB/c mice (P < 0.01). The induced antibody titer is much higher in subcutaneous immunization mice than that in the mice inoculated via abdominal immunization (P < 0.05) and muscles immunization (P < 0.01). Mice immunized with 12 µg and 6 µg candidate vaccine induced higher level of antibody titer than that of 3 µg dosage group (P < 0.01, P < 0.05). Antibody change curve showed that HEV IgG antibody titer increased from 14 days post immunization (dpi) to 1:262144 and reached the peak level on 42 dpi before gradually retreated with the same level antibody titer with 1:131072 until 84 dpi. Mice inoculated with HEV3-179 produced higher titer of cytokines than the mock group, and the concentration of IL-1ß (P < 0.01) and IFN-γ (P < 0.01) further increased after stimulated by candidate vaccine. The result indicated that HEV3-179 possesses good immunogenicity, which could be used as a potential candidate for future HEV vaccine development.


Assuntos
Vírus da Hepatite E , Hepatite E , Vacinas de Partículas Semelhantes a Vírus , Animais , Camundongos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Escherichia coli , Hepatite E/prevenção & controle , Vírus da Hepatite E/genética , Vírus da Hepatite E/imunologia , Imunização , Proteínas Recombinantes/genética , Partículas Artificiais Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia
5.
Nature ; 612(7938): 132-140, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36385533

RESUMO

Bacteria have evolved diverse immunity mechanisms to protect themselves against the constant onslaught of bacteriophages1-3. Similar to how eukaryotic innate immune systems sense foreign invaders through pathogen-associated molecular patterns4 (PAMPs), many bacterial immune systems that respond to bacteriophage infection require phage-specific triggers to be activated. However, the identities of such triggers and the sensing mechanisms remain largely unknown. Here we identify and investigate the anti-phage function of CapRelSJ46, a fused toxin-antitoxin system that protects Escherichia coli against diverse phages. Using genetic, biochemical and structural analyses, we demonstrate that the C-terminal domain of CapRelSJ46 regulates the toxic N-terminal region, serving as both antitoxin and phage infection sensor. Following infection by certain phages, newly synthesized major capsid protein binds directly to the C-terminal domain of CapRelSJ46 to relieve autoinhibition, enabling the toxin domain to pyrophosphorylate tRNAs, which blocks translation to restrict viral infection. Collectively, our results reveal the molecular mechanism by which a bacterial immune system directly senses a conserved, essential component of phages, suggesting a PAMP-like sensing model for toxin-antitoxin-mediated innate immunity in bacteria. We provide evidence that CapRels and their phage-encoded triggers are engaged in a 'Red Queen conflict'5, revealing a new front in the intense coevolutionary battle between phages and bacteria. Given that capsid proteins of some eukaryotic viruses are known to stimulate innate immune signalling in mammalian hosts6-10, our results reveal a deeply conserved facet of immunity.


Assuntos
Bacteriófagos , Proteínas do Capsídeo , Escherichia coli , Imunidade Inata , Animais , Antitoxinas/imunologia , Bacteriófagos/imunologia , Proteínas do Capsídeo/imunologia , Escherichia coli/imunologia , Escherichia coli/virologia , Eucariotos/imunologia , Moléculas com Motivos Associados a Patógenos/imunologia
6.
J Virol ; 96(16): e0062722, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35924923

RESUMO

Rotavirus live-attenuated vaccines, both mono- and pentavalent, generate broadly heterotypic protection. B-cells isolated from adults encode neutralizing antibodies, some with affinity for VP5*, that afford broad protection in mice. We have mapped the epitope of one such antibody by determining the high-resolution cryo-EM structure of its antigen-binding fragment (Fab) bound to the virion of a candidate vaccine strain, CDC-9. The Fab contacts both the distal end of a VP5* ß-barrel domain and the two VP8* lectin-like domains at the tip of a projecting spike. Its interactions with VP8* do not impinge on the likely receptor-binding site, suggesting that the mechanism of neutralization is at a step subsequent to initial attachment. We also examined structures of CDC-9 virions from two different stages of serial passaging. Nearly all the VP4 (cleaved to VP8*/VP5*) spikes on particles from the earlier passage (wild-type isolate) had transitioned from the "upright" conformation present on fully infectious virions to the "reversed" conformation that is probably the end state of membrane insertion, unable to mediate penetration, consistent with the very low in vitro infectivity of the wild-type isolate. About half the VP4 spikes were upright on particles from the later passage, which had recovered substantial in vitro infectivity but had acquired an attenuated phenotype in neonatal rats. A mutation in VP4 that occurred during passaging appears to stabilize the interface at the apex of the spike and could account for the greater stability of the upright spikes on the late-passage, attenuated isolate. IMPORTANCE Rotavirus live-attenuated vaccines generate broadly heterotypic protection, and B-cells isolated from adults encode antibodies that are broadly protective in mice. Determining the structural and mechanistic basis of broad protection can contribute to understanding the current limitations of vaccine efficacy in developing countries. The structure of an attenuated human rotavirus isolate (CDC-9) bound with the Fab fragment of a broadly heterotypic protective antibody shows that protection is probably due to inhibition of the conformational transition in the viral spike protein (VP4) critical for viral penetration, rather than to inhibition of receptor binding. A comparison of structures of CDC-9 virus particles at two stages of serial passaging supports a proposed mechanism for initial steps in rotavirus membrane penetration.


Assuntos
Anticorpos Amplamente Neutralizantes , Proteínas do Capsídeo , Epitopos de Linfócito B , Rotavirus , Vacinas Atenuadas , Vírion , Animais , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/ultraestrutura , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Camundongos , Conformação Proteica , Ratos , Rotavirus/química , Rotavirus/classificação , Rotavirus/imunologia , Rotavirus/fisiologia , Inoculações Seriadas , Vacinas Atenuadas/química , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/metabolismo , Vírion/imunologia , Vírion/metabolismo , Vírion/ultraestrutura
7.
Front Immunol ; 13: 975803, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032092

RESUMO

Gene transfer using adeno-associated viral (AAV) vectors has made tremendous progress in the last decade and has achieved cures of debilitating diseases such as hemophilia A and B. Nevertheless, progress is still being hampered by immune responses against the AAV capsid antigens or the transgene products. Immunosuppression designed to blunt T cell responses has shown success in some patients but failed in others especially if they received very high AAV vectors doses. Although it was initially thought that AAV vectors induce only marginal innate responses below the threshold of systemic symptoms recent trials have shown that complement activation can results in serious adverse events. Dorsal root ganglia toxicity has also been identified as a complication of high vector doses as has severe hepatotoxicity. Most of the critical complications occur in patients who are treated with very high vector doses indicating that the use of more efficient AAV vectors to allow for dose sparing or giving smaller doses repeatedly, the latter in conjunction with antibody or B cell depleting measures, should be explored.


Assuntos
Dependovirus , Terapia Genética , Vetores Genéticos , Proteínas do Capsídeo/imunologia , Dependovirus/imunologia , Terapia Genética/efeitos adversos , Vetores Genéticos/imunologia , Humanos , Transgenes
8.
J Virol ; 96(13): e0056622, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35703545

RESUMO

The family of human papillomaviruses (HPV) includes over 400 genotypes. Genus α genotypes generally infect the anogenital mucosa, and a subset of these HPV are a necessary, but not sufficient, cause of cervical cancer. Of the 13 high-risk (HR) and 11 intermediate-risk (IR) HPV associated with cervical cancer, genotypes 16 and 18 cause 50% and 20% of cases, respectively, whereas HPV16 dominates in other anogenital and oropharyngeal cancers. A plethora of ßHPVs are associated with cutaneous squamous cell carcinoma (CSCC), especially in sun-exposed skin sites of epidermodysplasia verruciformis (EV), AIDS, and immunosuppressed patients. Licensed L1 virus-like particle (VLP) vaccines, such as Gardasil 9, target a subset of αHPV but no ßHPV. To comprehensively target both α- and ßHPVs, we developed a two-component VLP vaccine, RG2-VLP, in which L2 protective epitopes derived from a conserved αHPV epitope (amino acids 17 to 36 of HPV16 L2) and a consensus ßHPV sequence in the same region are displayed within the DE loop of HPV16 and HPV18 L1 VLP, respectively. Unlike vaccination with Gardasil 9, vaccination of wild-type and EV model mice (Tmc6Δ/Δ or Tmc8Δ/Δ) with RG2-VLP induced robust L2-specific antibody titers and protected against ß-type HPV5. RG2-VLP protected rabbits against 17 αHPV, including those not covered by Gardasil 9. HPV16- and HPV18-specific neutralizing antibody responses were similar between RG2-VLP- and Gardasil 9-vaccinated animals. However, only transfer of RG2-VLP antiserum effectively protected naive mice from challenge with all ßHPVs tested. Taken together, these observations suggest RG2-VLP's potential as a broad-spectrum vaccine to prevent αHPV-driven anogenital, oropharyngeal, and ßHPV-associated cutaneous cancers. IMPORTANCE Licensed preventive HPV vaccines are composed of VLPs derived by expression of major capsid protein L1. They confer protection generally restricted to infection by the αHPVs targeted by the up-to-9-valent vaccine, and their associated anogenital cancers and genital warts, but do not target ßHPV that are associated with CSCC in EV and immunocompromised patients. We describe the development of a two-antigen vaccine protective in animal models against known oncogenic αHPVs as well as diverse ßHPVs by incorporation into HPV16 and HPV18 L1 VLP of 20-amino-acid conserved protective epitopes derived from minor capsid protein L2.


Assuntos
Alphapapillomavirus , Carcinoma de Células Escamosas , Papillomaviridae , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Alphapapillomavirus/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Carcinoma de Células Escamosas/prevenção & controle , Epitopos/imunologia , Feminino , Papillomavirus Humano 16/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Papillomaviridae/imunologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/imunologia , Coelhos , Vacinas de Partículas Semelhantes a Vírus/imunologia
9.
Nat Commun ; 13(1): 716, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132090

RESUMO

Mitogen-activated protein kinase (MAPK) cascades play an important role in innate immunity against various pathogens in plants and animals. However, we know very little about the importance of MAPK cascades in plant defense against viral pathogens. Here, we used a positive-strand RNA necrovirus, beet black scorch virus (BBSV), as a model to investigate the relationship between MAPK signaling and virus infection. Our findings showed that BBSV infection activates MAPK signaling, whereas viral coat protein (CP) counteracts MAPKKKα-mediated antiviral defense. CP does not directly target MAPKKKα, instead it competitively interferes with the binding of 14-3-3a to MAPKKKα in a dose-dependent manner. This results in the instability of MAPKKKα and subversion of MAPKKKα-mediated antiviral defense. Considering the conservation of 14-3-3-binding sites in the CPs of diverse plant viruses, we provide evidence that 14-3-3-MAPKKKα defense signaling module is a target of viral effectors in the ongoing arms race of defense and viral counter-defense.


Assuntos
Proteínas 14-3-3/imunologia , Proteínas do Capsídeo/imunologia , MAP Quinase Quinase Quinases/imunologia , Imunidade Vegetal/genética , Tombusviridae/patogenicidade , Proteínas 14-3-3/genética , Morte Celular , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Ligação Proteica , /imunologia , Tombusviridae/classificação , Tombusviridae/metabolismo
10.
J Mol Model ; 28(2): 51, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35112241

RESUMO

Humans are a major reservoir of the hepatitis B virus (HBV), therefore promising treatment and control vaccination strategies are needed to eradicate the virus. Though promising drugs and vaccines are available against HBV, still efforts are required to enrich the therapy options. Herein, the HBV assembly protein was explored to identify novel targets for future use against HBV. Computer-aided drug designing and immune-informatics techniques were employed for the identification of putative inhibitors and vaccine ensemble against HBV using capsid assembly protein. The identified drug molecule binds with high affinity to the active pocket of the protein, and several epitopes are scanned in the protein sequence. The drug molecule, besides being a good putative inhibitor, has acceptable drug-like properties. A multi-epitope vaccine is also constructed to overcome the limitations of weakly immunogenic epitopes. In contrast to the MHC II level, the set of predicted epitopes has been recognized to interact with significant numbers of HLA alleles of MHC I. Selected epitopes are extremely virulent, antigenic, nontoxic, nonallergic, have suitable affinity to bind with the prevailing DRB*0101 allele, and also spectacle 86% mediocre population coverage. A multi-epitope peptide-based vaccine chimera having 73 amino acids was designed. It emerged as substantially immunogenic, thermally stable, robust in producing cellular as well as humoral immune responses, and had competent physicochemical properties to analyze in vitro and in vivo studies. The capsid assembly protein is a in more stable nature in the presence of the drug molecule compared to the TLR3 receptor in the vaccine presence. These particulars were confirmed by exposing the docked molecules to absolute and relative binding free energy approaches of MMGBSA/PBSA. The purpose to investigate the interactions between the vaccine and a representative TLR3 immune receptor can reveal the intermolecular affinity and possible presentation mechanism of the vaccine by TLR3 to the host immune system. It was revealed that the vaccine is showing a very good affinity of binding for the TLR3 and forming a network of hydrophobic and hydrophilic interactions. Overall, the findings of this study are promising and might be useful for further experimental validations.


Assuntos
Antivirais/química , Proteínas do Capsídeo/química , Biologia Computacional , Vacinas contra Hepatite B/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Sítios de Ligação , Proteínas do Capsídeo/imunologia , Domínio Catalítico , Análise por Conglomerados , Biologia Computacional/métodos , Bases de Dados Factuais , Desenho de Fármacos , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Humanos , Ligantes , Ligação Proteica , Relação Estrutura-Atividade
11.
Microbiol Spectr ; 10(1): e0212321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044206

RESUMO

Vaccines against inclusion body hepatitis in chickens are complicated by the involvement of antigenically diverse fowl adenovirus types. Though immunization with fiber protein confers robust protection, type specificity of fiber antibodies is an obstacle for the desired broad coverage. In this study, we utilized information on multiple linear epitopes predicted in the Fowl Aviadenovirus E (FAdV-E) fiber head (knob) to develop chimeric fibers with an exchange between two serotypes' sequences, each containing proposed epitopes. Two consecutive segments pertaining to amino acid positions 1 to 441 and 442 to 525/523 in the fibers of FAdV-8a and -8b, types of Fowl Aviadenovirus E that cause inclusion body hepatitis, were swapped reciprocally to result in novel chimeras, crecFib-8a/8b and crecFib-8b/8a. crecFib was indistinguishable from monospecific recombinant fibers in its eactivity with different FAdV antisera in Western blotting. However, contrary to the results for monospecific fibers, crecFib induced cross-neutralizing antibodies against both serotypes in chickens. This demonstrates three nonidentical epitopes in the FAdV-E fiber, the conserved epitope detected in Western blotting and at least two epitopes participating in neutralization, being type specific and located opposite residue position 441-442. Furthermore, we supply conformational evidence for a site in the fiber knob with accessibility critical for neutralization. With such an extended neutralization spectrum compared to those of individual fibers, crecFib was anticipated to fulfill and even extend the mechanistic basis of fiber-mediated protection toward bivalent coverage. Accordingly, crecFib, administered as a single-antigen component, protected chickens simultaneously against challenge with FAdV-8a or -8b, demonstrated by up-to-complete resistance to clinical disease, prevention of target organ-related changes, and significant reduction of viral load. IMPORTANCE The control of inclusion body hepatitis, a disease of economic importance for chicken production worldwide, is complicated by an etiology involving multiple divergent fowl adenovirus types. The fiber protein is principally efficacious in inducing neutralizing and protective antibodies in vaccinated chickens; however, it faces limitations due to its intrinsic type specificity for neutralization. In this study, based on an in silico-guided prediction of multiple epitopes in the fowl adenovirus fiber head's loops, we designed chimeric proteins, swapping N- and C-distal fiber portions, each containing putative epitopes, between divergent types FAdV-8a and -8b. In in vitro and in vivo studies, the chimeric fiber displayed extended properties compared to those of individual monotype-specific fibers, allowing the number, distribution, functionality, and conformational bearings of epitopes of the fowl adenovirus fiber to be characterized in more detail. Importantly, the chimeric fiber induced cross-neutralizing antibodies and protective responses in chickens against infections by both serotypes, promoting the advancement of broadly protective subunit vaccination strategies against FAdV.


Assuntos
Infecções por Adenoviridae/veterinária , Aviadenovirus/imunologia , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenoviridae/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Aviadenovirus/genética , Proteínas do Capsídeo/genética , Galinhas , Proteção Cruzada , Epitopos/genética , Epitopos/imunologia , Doenças das Aves Domésticas/sangue , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinação , Vacinas de Subunidades/administração & dosagem , Vacinas de Subunidades/genética , Vacinas de Subunidades/imunologia , Vacinas Virais/genética
12.
Virology ; 566: 89-97, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894525

RESUMO

Virus-like particles (VLPs) modified through different molecular technologies are employed as delivery vehicles or platforms for heterologous antigen display. We have recently created a norovirus (NoV) VLP platform, where two influenza antigens, the extracellular domain of matrix protein M2 (M2e) or the stem domain of the major envelope glycoprotein hemagglutinin (HA2) are displayed on the surface of the NoV VLPs by SpyTag/SpyCatcher conjugation. To demonstrate the feasibility of the platform to deliver foreign antigens, this study examined potential interference of the conjugation with induction of antibodies against conjugated M2e peptide, HA2, and NoV VLP carrier. High antibody response was induced by HA2 but not M2e decorated VLPs. Furthermore, HA2-elicited antibodies did not neutralize the homologous influenza virus in vitro. Conjugated NoV VLPs retained intact receptor binding capacity and self-immunogenicity. The results demonstrate that NoV VLPs could be simultaneously used as a platform to deliver foreign antigens and a NoV vaccine.


Assuntos
Anticorpos Antivirais/biossíntese , Hemaglutininas Virais/genética , Imunoglobulina G/biossíntese , Vacinas contra Influenza/genética , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/genética , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Feminino , Hemaglutininas Virais/imunologia , Humanos , Imunoconjugados/genética , Imunoconjugados/imunologia , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/biossíntese , Influenza Humana/imunologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Norovirus/genética , Norovirus/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinação/métodos , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia
13.
Vet Microbiol ; 264: 109283, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34902738

RESUMO

Porcine circovirus-associated diseases (PCVADs) and pseudorabies (PR) are highly contagious and economically significant diseases of swine in China. Porcine circovirus type 3 (PCV3) is an emerging swine pathogen of PCVAD. Currently, no PCV3 vaccine is commercially available, and the epidemic caused by it is still spreading worldwide. In this study, we used the PRV variant strain HNX as the parental virus to construct recombinant PRV with TK/gE gene deletion and capsid (Cap) protein co-expression, named HNX-ΔTK/ΔgE-ORF2. The results revealed that PCV3 Cap protein can be detected in HNX-ΔTK/ΔgE-ORF2-infected PK-15 cells by both western blotting and immunofluorescence assays. Vaccination with HNX-ΔTK/ΔgE-ORF2 did not cause pruritus, ruffled fur, systemic infection, or inflammation (without high expression of interleukin-6 (IL-6) and granulocyte colony-stimulating factor (G-CSF) in plasma). Furthermore, HNX-ΔTK/ΔgE-ORF2 immunization induced an anti-Cap specific antibody, activated a PRV-specific cellular immune response, and provided 100 % protection to mice against the challenge of the virulent HNX strain. Thus, HNX-ΔTK/ΔgE-ORF2 appears to be a promising vaccine candidate against PRV and PCV3 for the control of the PRV variant and PCV3.


Assuntos
Proteínas do Capsídeo , Circovirus , Herpesvirus Suídeo 1 , Pseudorraiva , Vacinas Virais , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Circovirus/genética , Circovirus/imunologia , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/imunologia , Camundongos , Pseudorraiva/imunologia , Pseudorraiva/virologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Vacinas Virais/imunologia
14.
J Virol ; 96(2): e0119821, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34757840

RESUMO

Since 2001, strains of porcine parvovirus (PPV), designated 27a-like strains, were observed in Europe, suggesting a predominance of these viruses over older strains. The reasons for the obvious evolutionary advantage are unknown. Here, a series of mutants containing amino acid replacements found in the predominant field strains were generated in a PPV-NADL2 background, and their impact on replication efficiency and antibody binding activity was determined. Some amino acid substitutions observed in the 27a-like strains significantly increased viral fitness and decreased neutralization activity of serum samples raised against commercial vaccines and old virus strains (e.g., NADL2). These mutant viruses and a monoclonal antibody raised against a classical PPV strain defined a 27a-specific neutralizing epitope around amino acid 228 of the capsid protein VP2. Based on the analysis of the mutant viruses, it is hypothesized that the predominant factor for the global spread of the PPV-27a strain substitutions is an increased viral fitness of the 27a-like viruses, possibly supported by partial immune selection. This is reminiscent to the evolution of canine parvovirus and worldwide replacement of the original virus by the so-called new antigenic types. IMPORTANCE Porcine parvovirus is one of the most important causes of reproductive failure in swine. Recently, despite the continuous use of vaccines, "new" strains emerged, leading to the hypothesis that the emergence of new amino acid substitutions could be a viral adaptation to the immune response against the commercial vaccines. Our results indicate the amino acid substitutions observed in the 27a-like strains can modify viral fitness and antigenicity. However, an absolute immune escape was not evident.


Assuntos
Proteínas do Capsídeo/genética , Parvovirus Suíno/fisiologia , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Células Cultivadas , Epitopos/genética , Epitopos/imunologia , Modelos Moleculares , Testes de Neutralização , Parvovirus Suíno/genética , Parvovirus Suíno/imunologia , Suínos , Replicação Viral
15.
J Virol ; 96(4): e0137821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34851145

RESUMO

African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), which is a devastating pig disease threatening the global pork industry. However, currently, no commercial vaccines are available. During the pig immune response, major histocompatibility complex class I (MHC-I) molecules select viral peptide epitopes and present them to host cytotoxic T lymphocytes, thereby playing critical roles in eliminating viral infections. Here, we screened peptides derived from ASFV and determined the molecular basis of ASFV-derived peptides presented by the swine leukocyte antigen 1*0101 (SLA-1*0101). We found that peptide binding in SLA-1*0101 differs from the traditional mammalian binding patterns. Unlike the typical B and F pockets used by the common MHC-I molecule, SLA-1*0101 uses the D and F pockets as major peptide anchor pockets. Furthermore, the conformationally stable Arg114 residue located in the peptide-binding groove (PBG) was highly selective for the peptides. Arg114 draws negatively charged residues at positions P5 to P7 of the peptides, which led to multiple bulged conformations of different peptides binding to SLA-1*0101 and creating diversity for T cell receptor (TCR) docking. Thus, the solid Arg114 residue acts as a "mooring stone" and pulls the peptides into the PBG of SLA-1*0101. Notably, the T cell recognition and activation of p72-derived peptides were verified by SLA-1*0101 tetramer-based flow cytometry in peripheral blood mononuclear cells (PBMCs) of the donor pigs. These results refresh our understanding of MHC-I molecular anchor peptides and provide new insights into vaccine development for the prevention and control of ASF. IMPORTANCE The spread of African swine fever virus (ASFV) has caused enormous losses to the pork industry worldwide. Here, a series of ASFV-derived peptides were identified, which could bind to swine leukocyte antigen 1*0101 (SLA-1*0101), a prevalent SLA allele among Yorkshire pigs. The crystal structure of four ASFV-derived peptides and one foot-and-mouth disease virus (FMDV)-derived peptide complexed with SLA-1*0101 revealed an unusual peptide anchoring mode of SLA-1*0101 with D and F pockets as anchoring pockets. Negatively charged residues are preferred within the middle portion of SLA-1*0101-binding peptides. Notably, we determined an unexpected role of Arg114 of SLA-1*0101 as a "mooring stone" which pulls the peptide anchoring into the PBG in diverse "M"- or "n"-shaped conformation. Furthermore, T cells from donor pigs could activate through the recognition of ASFV-derived peptides. Our study sheds light on the uncommon presentation of ASFV peptides by swine MHC-I and benefits the development of ASF vaccines.


Assuntos
Vírus da Febre Suína Africana/química , Arginina/química , Epitopos de Linfócito T/química , Antígenos de Histocompatibilidade Classe I/química , Peptídeos/química , Vírus da Febre Suína Africana/imunologia , Animais , Apresentação de Antígeno , Sítios de Ligação , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Epitopos de Linfócito T/imunologia , Vírus da Febre Aftosa/química , Vírus da Febre Aftosa/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Ativação Linfocitária , Peptídeos/imunologia , Ligação Proteica , Conformação Proteica , Suínos , Linfócitos T Citotóxicos/imunologia
16.
J Infect Dis ; 225(7): 1205-1214, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32179892

RESUMO

Human noroviruses are the most common viral agents of acute gastroenteritis. Recently, human intestinal enteroids were shown to be permissive for norovirus infection. We tested their suitability as a system to study norovirus neutralization. Hyperimmune sera raised against virus-like particles (VLPs) representing different genotypes showed highly specific neutralization activity against GII.4 and GII.6 noroviruses. Carbohydrate blocking assays and neutralization exhibited similar patterns in antibody responses. Notably, sera produced against chimeric VLPs that presented swapped structural shell and protruding (P) domains, from different genotypes showed that neutralization is primarily mediated by antibodies mapping to the P domain of the norovirus capsid protein. This study provides empirical information on the antigenic differences among genotypes as measured by neutralization, which could guide vaccine design.


Assuntos
Anticorpos Neutralizantes , Infecções por Caliciviridae , Norovirus , Humanos , Anticorpos Antivirais , Proteínas do Capsídeo/imunologia , Gastroenterite/virologia , Genótipo , Norovirus/genética , Soros Imunes/imunologia
17.
J Virol ; 96(1): e0141521, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34613806

RESUMO

Human astrovirus is an important cause of viral gastroenteritis worldwide. Young children, the elderly, and the immunocompromised are especially at risk for contracting severe disease. However, no vaccines exist to combat human astrovirus infection. Evidence points to the importance of antibodies in protecting healthy adults from reinfection. To develop an effective subunit vaccine that broadly protects against diverse astrovirus serotypes, we must understand how neutralizing antibodies target the capsid surface at the molecular level. Here, we report the structures of the human astrovirus capsid spike domain bound to two neutralizing monoclonal antibodies. These antibodies bind two distinct conformational epitopes on the spike surface. We add to existing evidence that the human astrovirus capsid spike contains a receptor-binding domain and demonstrate that both antibodies neutralize human astrovirus by blocking virus attachment to host cells. We identify patches of conserved amino acids which overlap or border the antibody epitopes and may constitute a receptor-binding site. Our findings provide a basis for developing therapies to prevent and treat human astrovirus gastroenteritis. IMPORTANCE Human astroviruses infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies block astrovirus infection. Here, we determined the crystal structures of the astrovirus capsid protein in complex with two virus-neutralizing antibodies. We show that the antibodies bind to two distinct sites on the capsid spike domain, however, both antibodies block virus attachment to human cells. Importantly, our findings support the use of the human astrovirus capsid spike as an antigen in a subunit-based vaccine to prevent astrovirus disease.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Astroviridae/imunologia , Infecções por Astroviridae/virologia , Capsídeo/imunologia , Epitopos/imunologia , Mamastrovirus/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Afinidade de Anticorpos/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Epitopos/química , Interações Hospedeiro-Patógeno/imunologia , Humanos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade , Ligação Viral
18.
Front Immunol ; 12: 738486, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733278

RESUMO

Merkel cell polyomavirus (MCPyV) is the main causative agent of Merkel cell carcinoma (MCC), a rare but aggressive skin tumor with a typical presentation age >60 years. MCPyV is ubiquitous in humans. After an early-age primary infection, MCPyV establishes a clinically asymptomatic lifelong infection. In immunocompromised patients/individuals, including elders, MCC can arise following an increase in MCPyV replication events. Elders are prone to develop immunesenescence and therefore represent an important group to investigate. In addition, detailed information on MCPyV serology in elders has been debated. These findings cumulatively indicate the need for new research verifying the impact of MCPyV infection in elderly subjects (ES). Herein, sera from 226 ES, aged 66-100 years, were analyzed for anti-MCPyV IgGs with an indirect ELISA using peptides mimicking epitopes from the MCPyV capsid proteins VP1-2. Immunological data from sera belonging to a cohort of healthy subjects (HS) (n = 548) aged 18-65 years, reported in our previous study, were also included for comparisons. Age-/gender-specific seroprevalence and serological profiles were investigated. MCPyV seroprevalence in ES was 63.7% (144/226). Age-specific MCPyV seroprevalence resulted as 62.5% (25/40), 71.7% (33/46), 64.9% (37/57), 63.8% (30/47), and 52.8% (19/36) in ES aged 66-70, 71-75, 76-80, 81-85, and 86-100 years, respectively (p > 0.05). MCPyV seroprevalence was 67% (71/106) and 61% (73/120) in ES males and females, respectively (p > 0.05). Lack of age-/gender-related variations in terms of MCPyV serological profiles was found in ES (p > 0.05). Notably, serological profile analyses indicated lower optical densities (ODs) in ES compared with HS (p < 0.05), while lower ODs were also determined in ES males compared with HS males (p < 0.05). Our data cumulatively suggest that oncogenic MCPyV circulates in elders asymptomatically at a relatively high prevalence, while immunesenescence might be responsible for a decreased IgG antibody response to MCPyV, thereby potentially leading to an increase in MCPyV replication levels. In the worse scenario, alongside other factors, MCPyV might drive MCC carcinogenesis, as described in elders with over 60 years of age.


Assuntos
Envelhecimento/imunologia , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Imunoglobulina G/sangue , Imunossenescência , Poliomavírus das Células de Merkel/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/sangue , Epitopos , Feminino , Voluntários Saudáveis , Interações Hospedeiro-Patógeno , Humanos , Masculino , Poliomavírus das Células de Merkel/patogenicidade , Pessoa de Meia-Idade , Adulto Jovem
19.
Curr Opin Virol ; 51: 199-206, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34749266

RESUMO

Outbreaks of enteroviral infections are associated with morbidity and mortality in susceptible individuals worldwide. There are still no antiviral drugs or vaccines against most circulating enteroviruses. Antibody-mediated immunity is crucial for preventing and limiting enteroviral infections. In this review, we focus on enteroviruses that continue to cause endemics in recent years, such as rhinovirus, enterovirus A71, coxsackievirus, and echovirus, and introduce a structural understanding of the mechanisms of virus neutralization. The mechanisms by which virus-specific antibodies neutralize enteroviruses have been explored not only through study of viral structures, but also through understanding virus-antibody interactions at the amino acid level. Neutralizing epitopes are predominantly mapped on the canyon northern rim, canyon inner surface, canyon southern rim, and twofold and threefold plateaus of the capsid, where surface-exposed loops are located. This review also describes recent progress in deciphering the virus-receptor complex and structural rearrangements involved in the uncoating process, providing insight into plausible virus neutralization mechanisms.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Enterovirus/imunologia , Animais , Antígenos Virais/química , Antígenos Virais/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Doenças Endêmicas , Humanos
20.
Viruses ; 13(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34834968

RESUMO

Noroviruses are responsible for almost a fifth of all cases of gastroenteritis worldwide. The calicivirus capsid is composed of 180 copies of VP1 with a molecular weight of ~58 kDa. This coat protein is divided into the N-terminus (N), the shell (S) and C-terminal protruding (P) domains. The S domain forms a shell around the viral RNA genome, while the P domains dimerize to form protrusions on the capsid surface. The P domain is subdivided into P1 and P2 subdomains, with the latter containing the binding sites for cellular receptors and neutralizing antibodies. Reviewed here are studies on murine norovirus (MNV) showing that the capsid responds to several physiologically relevant cues; bile, pH, Mg2+, and Ca2+. In the initial site of infection, the intestinal tract, high bile and metal concentrations and low pH cause two significant conformational changes: (1) the P domain contracts onto the shell domain and (2) several conformational changes within the P domain lead to enhanced receptor binding while blocking antibody neutralization. In contrast, the pH is neutral, and the concentrations of bile and metals are low in the serum. Under these conditions, the loops at the tip of the P domain are in the open conformation with the P domain floating on a linker or tether above the shell. This conformational state favors antibody binding but reduces interactions with the receptor. In this way, MNV uses metabolites and environmental cues in the intestine to optimize cellular attachment and escape antibody binding but presents a wholly different structure to the immune system in the serum. To our knowledge, this is the first example of a virus shapeshifting in this manner to escape the immune response.


Assuntos
Gastroenterite/imunologia , Gastroenterite/virologia , Norovirus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Bile , Sítios de Ligação , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Microscopia Crioeletrônica , Genoma Viral , Camundongos , Modelos Moleculares , Norovirus/genética , Ligação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...